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1. INTRODUCTION

The study of the dynamical behaviour of longitudinally vibrating rods has stimulated the
interest of researchers for many years. Recently, a study by Kukla et al. considered the
problem of the natural longitudinal vibrations of two rods coupled by many translational
springs where the Green's function method was employed [1]. Since then, Mermertas and
GuK rgoK ze [2] investigated a system made up of two clamped}free axially vibrating rods
carrying tip masses, to which a double spring}mass system is attached as a secondary
system across the span. As an extension of that publication, the present letter deals with
a similar mechanical system, which is not only more complicated but also has more general
application than the earlier studies.

The present study is concerned with longitudinal vibrations of a mechanical system
consisting of two clamped}free rods carrying tip masses (as the primary system, ps) to which
several double spring}mass systems are attached (as secondary systems, ss) across the span.

The major contribution of this study is to derive a general formulation for the exact
solution of the system described by using the Green's function method.

2. THEORY

The problem to be considered in the present study is the natural vibration of the system
shown in Figure 1; i.e., a longitudinally vibrating system consisting of two clamped}free
rods carrying tip masses to which several double spring}mass systems are attached across
the span.

However, in order to aid the explanation and to clarify the physics of the system, the
Green's function method will "rst be applied to the n"1 case; the results can then easily be
generalized for the n"n case.

2.1. THE CASE OF ONE ss, n"1

The combined system, which has already been studied in reference [2] and which is to be
investigated initially, consists of two clamped}free rods carrying tip masses to which
a double spring}mass system is attached across the span, (see Figure 2). ¸
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i
denote length, mass per unit length, location of the spring attachment point and axial
rigidity of the ith rod respectively (i"1, 2). The secondary system consists of two springs of
sti!ness k

1
, k

2
and mass M

s
. The longitudinal vibration displacements of the "rst and

second rods are denoted as u
1
(x, t) and u

2
(x, t), respectively, and z(t) represents the

displacement of the mass M
s
.
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Figure 1. Two clamped}free axially vibrating rods carrying tip masses to which several double spring}mass
systems are attached across the span.

Figure 2. Two clamped}free axially vibrating rods carrying tip masses to which a double spring}mass system is
attached across the span.
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Assuming that the spring forces, which are generated by the ss, are singular e!ects for
both the rods, the longitudinal vibration equations of the system can be written in the
following form:
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The motion of the secondary mass is governed by
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Here d()) denotes the Dirac delta function and dots and primes denote partial derivates with
respect to time t and position co-ordinate x respectively. Using separation of variables
according to
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(x, t)";
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(x) cos ut, i"1, 2,

z(t)"Z cos ut , (3)
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where ;
i
(x) and Z are the corresponding amplitude functions and u is the unknown

eigenfrequency of the combined system, and putting them into equations (1, 2),
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are obtained as the equations of motion, where
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Using the non-dimensional parameters below
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the equations of motion can be reformulated as
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For the solution of the above di!erential equations, the Green's function method will be
employed. For convenience, the derivation of the corresponding Green's function is given in
Appendix B. Therefore, via an analogy with (B3), i.e., using m
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respectively, Green's functions, which correspond to the combined system, can be written as
follows:

G
1
, (m

1
, g

1
)

"

1

bM Gsin (bM (m
1
!g

1
))H(m

1
!g

1
)!

cos (bM (1!g
1
))!aN

M1
bM sin (bM (1!g

1
))

cos bM !aN
M1

bM sin bM
sin (bM m

1
)H

G
2
, (m

2
, g

2
)"

1

dM bM Gsin (dM bM (m
2
!g

2
))H (m

2
!g

2
)

!

cos (dM bM (1!g
2
))!aN

M2
(a

L
/sdM )bM sin (dM bM (1!g

2
))

cos dM bM !aN
M2

(a
L
/sdM )bM sin dM bM

sin (dM bM m
2
)H , (8)



898 LETTERS TO THE EDITOR
where
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Here H ()) denotes the Heaviside unit step function. Now, the displacements of the points
m
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and m
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2
can be given in the form
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These equations represent a set of two homogeneous equations for the solution of the
unknowns ;M
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) and ;M
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) . A non-trivial solution exists when the determinant of the

coe$cient matrix vanishes. This condition in turn leads to the following frequency equation:
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The solution of equation (11) yields the desired non-dimensional frequency parameters bM of
the system.

2.2. GENERALIZATION FOR THE CASE OF SEVERAL ss1s, n"n

Consider a system of two rods that are carrying tip masses and coupled by n ss's in such
a way that n points of the "rst rod of co-ordinates g

11
, g

12
,2, g

1n
are connected to n points

of co-ordinates g
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belonging to the second rod, by using springs of sti!nesses
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which make up the ss's,

as shown in Figure 1.
Equations (7) which represent the governing di!erential equations of the combined

system having a single ss, i.e., n"1 is taken, can be reformulated for the case of several ss's,
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i.e., n"n is taken, as below
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Similar, for this case, equations (10) can be rearranged as
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For simplicity, these equations can be written in the following form, after some
re-arrangements
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Equations (15) represent displacement "elds on the axes m
1

and m
2
. In order to "nd the

displacements at all the attachment points along the axes,
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have to be substituted into equations (15). Thus, 2n equations are obtained for the 2n
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it more comprehensible, G (m)
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A non-trivial solution exists when the determinant of the coe$cient matrix A vanishes.
Thus, the following frequency equation can be obtained.

det(A)"0. (22)

The solution of equation (22) yields the non-dimensional frequency parameters bM of the
system.

3. NUMERICAL RESULTS

This section is devoted to the numerical evaluations of the formulae established in the
preceding sections. As an example, the n"2 case, i.e., the two-secondary-system case, is



Figure 3. Two clamped}free axially vibrating rods carrying tip masses to which two double spring}mass
systems are attached across the span.
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considered. Normally, the classical approach of deriving the frequency equation based on
the boundary value problem formulation is fairly complicated even for the case of two
secondary systems which is presented in Appendix A. Practically, as the number of
secondary systems exceeds two, the solution of the problem becomes nearly impossible and
extremely tedious. Since the solution of the problem for an n-number of secondary systems
does not exist in the literature to the best of our knowledge, the only way to prove the
validity of the Green's function method is to compare the formulation with the classical
approach with two secondary systems, i.e., n"2 (Figure 3).

The physical parameter values whose de"nitions are given in Appendix A are chosen as
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k
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k
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3
"0)5, g

4
"1.

In Table 1, the "rst 12 dimensionless eigenfrequency parameters bM of the described system
are given. The values in the "rst column are values from the solution of equation (A7),
whereas those in the second column are the roots of equation (22) derived via the Green's
function method. It is seen clearly that the values in the columns are identical, which justi"es
the lengthy and complicated expressions obtained by the application of the Green's
function method.

4. CONCLUSION

This study is concerned with longitudinal vibrations of a combined system consisting of
two clamped}free rods carrying tip masses to which several double spring}mass systems are
attached across the span. Using the Green's function method, the frequency equation of the



TABLE 1

Dimensionless eigenfrequency parameters bM of the system in Figure 3, i.e., n"2, 2a
k
"0)6,

3a
k
"4a

k
"2)5, a
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"1)3, a
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"1)5, 1a

M
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"2)5, a
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L
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g
1
"0)25, g

2
"0)75, g

3
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4
"1 are chosen

From equation (A7) From equation (22)

0)2871184548 0)2871184548
0)4300885248 0)4300885248
0)9210149661 0)9210149661
1)1808429443 1)1808429443
2)4393725240 2)4393725240
3)7660297675 3)7660297675
4)2259977171 4)2259977171
6)4108351523 6)4108351523
6)9801434970 6)9801434970
8)3955243247 8)3955243247
9)7141410409 9)7141410409

10)5493604996 10)5493604996
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system with n ss's is established. Then, in order to prove the validity of the expressions
derived, for a special system with n"2, the results are compared with those obtained on the
basis of a boundary value problem formulation. The two results are in excellent agreement
which clearly indicates the validity of the formulae obtained via the Green's function
method.
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APPENDIX A: BOUNDARY VALUE PROBLEM FORMULATION SOLUTION

FOR TWO ss's

In order to test the reliability of equation (22), corresponding to the Green's function
solution for n ss's, the following example is considered for two ss's; i.e., n"2 is chosen.

The combined system consist of two clamped}free rods carrying tip masses to which two
double spring}mass systems are attached across the span, as seen in Figure 3. ¸

i
, m

i
,

g
1
¸
1
, g

2
¸
1
, g

3
¸
2
, g

4
¸
2

and E
i
A

i
denote the length, mass per unit length, locations of the

spring attachment points and axial rigidity of the ith rod respectively (i"1, 2). Secondary
systems consist of two springs of sti!nesses k

1
, k

2
and k

3
, k

4
and the masses M

sj
( j"1, 2).

Furthermore, the longitudinal vibration displacements of the "rst and second rods to the
left and right of the spring attachment points are denoted as u

11
(x, t), u

12
(x, t), u

13
(x, t) and

u
21

(x, t), u
22

(x, t), u
23

(x, t), respectively, and z
1
(t), z

2
(t) represent the displacements of the

masses M
sj
.



LETTERS TO THE EDITOR 903
The equation of longitudinal vibration of the six rod portions are governed by the
following partial di!erential equations:
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1
(t)],

M
s2
zK
2
(t)"!k

3
[z

2
(t)!u

12
(g

2
¸
1
, t)]#k

4
[u

22
(g

4
¸
2
, t)!z

2
(t)],

u
21

(0, t)"0, u
21

(g
3
¸
2
, t)"u

22
(g

3
¸

2
, t),

!E
2
A

2
u@
21

(g
3
¸
2
, t)#E

2
A

2
u@
22

(g
3
¸

2
, t)#k

2
[z

1
(t)!u

21
(g

3
¸

2
, t)]"0,

u
22

(g
4
¸

2
, t)"u

23
(g

4
¸
2
, t) ,

!E
2
A

2
u@
22

(g
4
¸
2
, t)#E

2
A

2
u@
23

(g
4
¸

2
, t)#k

4
[z

2
(t)!u

22
(g

4
¸

2
, t)]"0,

E
2
A

2
u@
23

(¸
2
, t)#M

2
uK
23

(¸
2
, t)"0. (A2)

Here, dots and primes denote partial derivatives with respect to time t and position
co-ordinate x respectively. Using the standard method of separation of variables, one
assumes

u
ij
(x, t)";

ij
(x) cos ut (i"1, 2, j"1, 2, 3), (A3)

z
i
(t)"Z

i
cosut (i"1, 2), (A4)

where ;
ij
(x) and Z

i
are the corresponding amplitude functions of the rods and secondary

masses, respectively, and u is the unknown eigenfrequency of the combined system.
Substituting these into equations (A1), results in the following ordinary di!erential
equations:

;A
1j

(x)#b2;
1j

(x)"0, ;A
2j

(x)#k2b2;
2j

(x)"0, ( j"1, 2, 3). (A5)



904 LETTERS TO THE EDITOR
The general solutions of the ordinary di!erential equations (A5) are simply

;
1j

(x)"C
1j

sinbx#C
2j

cos bx , ;
2j

(x)"C
3
sinkbx#C

4j
cos kbx

( j"1, 2, 3) , (A6)

where C
1j
!C

4j
are 12 integration constants to be evaluated via conditions (A2). The

application of these boundary and matching conditions to solutions (A6) and the
amplitudes Z

i
yields a set of 14 homogeneous equations for the 14 unknown constants

C
1j
!C

4j
( j"1, 2, 3) and Z

i
(i"1, 2). A non-trivial solution of this set of equations is

possible only if the characteristic determinant of the coe$cient matrix vanishes. Taking into
account the fact that C

21
and C

41
vanish, the characteristic equation reduces the following

form:

det(K)"0. (A7)

Here, K is a 12]12 matrix, the elements of which are shown below where all of the
unwritten elements are equal to zero.

K
11
"sin g

1
bM , K

12
"!sin g

1
bM , K

13
"!cos g

1
bM ,

K
21
"bM cos g

1
bM #a

k1
sin g

1
bM , K

22
"!bM cos g

1
bM , K

23
"bM sin g

1
bM ,

K
2,11

"!a
k1

,

K
32
"sin g

2
bM , K

33
"cos g

2
bM , K

34
"!sin g

2
bM , K

35
"!cos g

2
bM ,

K
42
"bM cos g

2
bM #3a

k
a
k1

sin g
2
bM , K

43
"bM sin g

2
bM #3a

k
a
k1

cos g
2
bM ,

K
44
"!bM cos g

2
bM , K

45
"bM sin g

2
bM , K

4,12
"!3a

k
a
k1

,

K
54
"cos bM !aN

M1
bM sin bM , K

55
"!(sin bM #aN

M1
bM cos bM ) ,

K
61
"!a

k1
sin g

1
bM , K

66
"!2a

k
a
k1

sin t
3
bM ,

K
6,11

"!1a
M

bM 2#a
k1

(1#2a
k
),

K
72
"!3a

k
a
k1

sin g
2
bM , K

73
"!3a

k
a
k1

cos g
2
bM , K

77
"!4a

k
a
k1

sint
4
bM ,

K
78
"!4a

k
a
k1

cost
4
bM , K

7,12
"!2a

M
bM 2#a

k1
(3a

k
#4a

k
) ,

K
86
"sint

3
bM , K

87
"!sint

3
bM , K

88
"!cost

3
bM ,

K
96
"dM bM cost

3
bM #a

k2
sint

3
bM , K

97
"!dM bM cost

3
bM , K

98
"dM bM sint

3
bM ,

K
9,11

"!a
k2

,

K
10,7

"sint
4
bM , K

10,8
"cost

4
bM , K

10,9
"!sint

4
bM ,

K
10,10

"!cost
4
bM ,

K
11,7

"dM bM cost
4
bM #

4a
k
a
k2

2a
k

sint
4
bM , K

11,8
"!dM bM sint

4
bM #

4a
k
a
k2

2a
k

cos t
4
bM ,
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K
11,9

"!dM bM cos t
4
bM , K

11,10
"dM bM sint

4
bM , K

11,12
"!

4a
k
a
k2

2a
k

,

K
12,9

"cos dM bM !
a6
M2

ks
bM sin dM bM , K

12,10
"!(sin dM bM #

a6
M2

ks
bM cos dM bM ) . (A8)

Here, in addition to the abbreviation above, the following de"nitions are introduced:

fa
k
"

k
f

k
1

( f"2, 3, 4), ra
M
"

M
sr

m
1
¸
1

(r"1, 2) t
1
"ka

L
g
t

(t"3, 4) . (A9)

APPENDIX B

As is known [1], the corresponding Green's function for the clamped}free rod carrying
a tip mass, is the solution of the di!erential equation

d2G(x, m)

dx2
#bM 2G (x, m)"d(x!m) (B1)

subject to the following boundary conditions:

G (0, m)"0,

G@ (¸, m)!AbM 2G(¸, m)"0. (B2)

The solution G(x, m) satisfying di!erential equation (B1) is the Green's function that is
looked for. Thus, G(x, m) can be found as

G(x, m)"
1

bM Gsin(bM (x!m))H (x!m)!
cos (bM (¸!m))!AbM sin (bM (¸!m))

cos bM ¸!AbM sin bM ¸
sin (bM x)H ,

(B3)

where A denotes a
M1

for the "rst rod and a
M2

(a
L
/sdM ) for the second rod.
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